hoomd_flowwsDocumentation *Release 0.1*

Matthew Spellings

Feb 13, 2020

Contents:

1	Insta	llation	3
_	Documentation		
	2.1	Modules	5
	2.2	Indices and tables	7
In	dex		9

hoomd_flowws is an in-development set of modules to create reusable scientific workflows using hoomd-blue. While the python API of hoomd-blue holds enormous possibility for scriptability (including making projects like this possible in the first place), this flexibility can also lead to poorly-structured, rigid script workflows if not carefully managed. The aim of this project is to formulate a set of robust, modular individual components that can be composed to perform most common workflows.

hoomd-flowws is being developed in conjunction with flowws.

CHAPTER 1

Installation

Install hoomd_flowws from PyPI:

pip install hoomd_flowws

Alternatively, install from source:

pip install git+https://github.com/klarh/hoomd_flowws.git#egg=hoomd_flowws

CHAPTER 2

Documentation

Browse more detailed documentation online or build the sphinx documentation from source:

```
git clone https://github.com/klarh/hoomd_flowws
cd hoomd_flowws/doc
pip install -r requirements.txt
make html
```

2.1 Modules

Currently simply places points on a simple cubic lattice.

Parameters

- number Number of particles to simulate
- mass_scale Scaling factor for mass of all particles
- type_ratios Prevalence (ratio) of each particle type

```
run (scope, storage)
```

Run the contents of this stage

class hoomd_flowws.Interaction(**kwargs)

Specify a new interaction potential to include in future MD stages

Parameters

- reset Clear previously-defined interactions beforehand
- type Interaction class name
- global_params Global parameters of the interaction
- pair_params Type pair-based parameters of the interaction

```
classmethod register_interaction (interaction, *names)
Convenience method to bind one or more names to a force-generation function
```

```
run (scope, storage)
```

Registers this object to provide a force compute in future MD stages

```
class hoomd_flowws.ShapeDefinition(**kwargs)
```

Define per-type shapes for future stages to utilize

Shape information is used for visualization, packing fraction calculations, and pair force/HPMC integrator configuration.

Shapes consist of a base type, any parameters of the shape, and modifications. For example:

Parameters shape_arguments - List of per-shape specifications and modifiers.

```
run (scope, storage)
```

Run the contents of this stage

```
class hoomd_flowws.DEMInteraction (**kwargs)
Specify that DEM interactions should be included in future MD stages
```

Parameters

- reset Clear previously-defined DEM interactions beforehand
- type Interaction class name

```
run (scope, storage)
```

Registers this object to provide a DEM force compute in future MD stages

class hoomd_flowws.Run(**kwargs)

Run for a given number of timesteps using MD

Parameters

- steps Number of timesteps to run
- timestep_size Timestep size
- **integrator** Integrator type
- temperature Temperature for isothermal simulations
- ramp_t_to Ramp temperature to the given value over time during this stage
- tau_t Thermostat time constant for isothermal simulations
- pressure Pressure for isobaric simulations
- tau_p Barostat time constant for isobaric simulations
- **bd_seed** Random number seed for Brownian/Langevin thermostats
- zero_momentum Period for zeroing the momentum of the system (default: disabled)
- **backup_period** Period for dumping a backup file

- dump_period Period for dumping a trajectory file
- trajectory_quantities Additional trajectory quantities to dump
- **dump_quantities** Dump period and comma-separated list of quantities to record (i.e. temperature, pressure)
- expand_by Expand each dimension of the box by this ratio during this stage
- **compress_to** Compress to the given packing fraction during this stage (overrides expand_by)

run (*scope*, *storage*)

Run the contents of this stage

class hoomd_flowws.RunHPMC(**kwargs)

Run for some number of steps using HPMC

Parameters

- **steps** Number of timesteps to run
- integrator Integrator type
- pressure Pressure for isobaric simulations
- **backup_period** Period for dumping a backup file
- dump_period Period for dumping a trajectory file
- expand_by Expand each dimension of the box by this ratio during this stage
- **compress_to** Compress to the given packing fraction during this stage (overrides expand_by)
- integrator_seed Random number seed for integration method
- **tune** Tune move distances to achieve the target acceptance ratio after updating a given number of epochs and running the given number of steps at each epoch
- box_move_aspect Move distance and weight for box aspect ratio moves
- **box_move_length** Move distance and weight for box length moves
- **box_move_ln_volume** Move distance and weight for box log-volume moves
- box_move_shear Move distance and weight for box shear moves
- **box_move_volume** Move distance and weight for box volume moves

2.2 Indices and tables

- genindex
- modindex
- search

Index

D

DEMInteraction (class in hoomd_flowws), 6

I

Init (class in hoomd_flowws), 5
Interaction (class in hoomd_flowws), 5

R

```
register_interaction()
        (hoomd_flowws.Interaction class method),
        6
Run (class in hoomd_flowws), 6
run() (hoomd_flowws.DEMInteraction method), 6
run() (hoomd_flowws.DEMInteraction flow), 5
```

run() (hoomd_flowws.Init method), 5

run () (hoomd_flowws.Interaction method), 6

run() (hoomd_flowws.Run method), 7

run() (hoomd_flowws.ShapeDefinition method), 6
RunHPMC (class in hoomd_flowws), 7

S

ShapeDefinition (class in hoomd_flowws), 6